

Micro-Precision Technologies (MPT) is an independent manufacturer of hybrid integrated circuits, multichip modules, and high-precision thick film substrates for the military, medical, avionics, optoelectronics, and communications industries. Founded in 1987, MPT is ITAR registered, ISO 9001 certified, QML-38534 listed, and MIL-PRF-38534 qualified for hybrid microcircuit performance. MPT is a woman-owned, minority-owned small business.

10 Manor Parkway, Suite C Salem, New Hampshire 03079 603-893-7600 www.micropt.com

Thick Film Circuit Fabrication (Print and Fire)

Layers (Single-Layer, Multi-Layer, Double-Sided)

Conductors	Au, Pt, PtAu, PdAu, PtPdAu Ag, PtAg, PdAg, PtPdAg
Plated-Through Vias/Holes	Connection top to bottom circuitry or to ground
Solid-Filled Vias/Holes	Connection top to bottom circuitry or to ground
Dielectrics	Protection for underlying circuitry
Thick Film Printed Resistors	Alternative to surface mount resistors
Overglaze	Protection for underlying circuitry
Substrates	
91% Alumina (Al ₂ O ₃)	As Fired, Lapped, Polished
92% Alumina	As Fired, Lapped, Polished
96% Alumina	As Fired, Lapped, Polished
99.6% Alumina	As Fired, Lapped, Polished
Aluminum Nitride (AIN)	Lapped, Polished
Beryllium Oxide (BeO)	As Fired, Lapped
Ferrite	Lapped, Polished
Substrate Processing	
Laser Scribe	Single/Array

Laser Scribe	Single/Array
Laser Drill	Vias/Holes
Laser Machining	Per Specification
Diamond Saw Cut	± 0.002" Tolerance

Assembly

Surface Mount (SMT)	Conductive or Non-Conductive Epoxy
	Solder Reflow
	Solder Lead/Pin Attachment

Wire Bonding

Gold Ball	0.001"–0.003" Wire
Gold Wedge	0.0005"–0.003" Wire
Aluminum Wedge	0.001"–0.003" Wire

Product Testing/Measurement

Physical Dimensions (Ceramic)	Verify conforming to customer specification
Continuity/Netlist Connection Integrity	Resistor measurement value verification
Metallization Adhesion	Leach resistance (verify adhesion)
Trace Thickness and Width	Verify conforming to customer specification
Wire Bond Qualification/Pull Testing	Bond strength
Wire Bond Qualification/Shear Testing	Bond strength
Burn-In	Circuit stabilization
Performance	Design confirmation
Environmental	Endurance verification
Leak Testing	Verify hermetic seal

Engineering/Support/CAD

Circuit Design	Layout from schematic
Circuit Conversion	Convert from PCB (G10/FR4)
Artwork Generation	Circuit pattern definition

Advanced Processes

Packaging, Potting, and Encapsulation	Ceramic, Glass Fiber Filled Plastic, Diallyx Phthalate
Ceramic Glass Sealing	Ceramic Packages
Plated Up Thick Film Circuits	High Current/High Power Ni, Cu, Au

Thick Film Design Guidelines

Substrates (Alumina, Aluminum Nitride, Beryllium Oxide)

Nominal Thickness	10, 15, 25, 30, 40, 50, 60 mils \pm 5 mils Other thicknesses achieved by lapping
Conductors	
Line Width (min.)	0.005"
Space Width (min.)	0.005″
Thickness (typ.)	8–12+ microns per layer
Pull back (from diced edges, min.)	0.004", 0.010", 0.004"
Pull back (from scribed edge, min)	0.004", 0.010", 0.004"
Pull back (from edge of dielectric, min.)	0.004", 0.010", 0.004"
Alignment (front to back)	0.004"-0.008"
Resistors	
Line Width (min)	0.005"-0.010"
Space Width (min.)	0.005"-0.010"
Minimum width relative to conductor width	0.010" less, centered
Minmum Overlap With Conductor	0.003"
Minimum Value	1Ω
Maximum Value	20 ΜΩ
Multiple Resistors (on one side of chip)	Yes, parameter defined
Typical Tolerance	1%, 2%, 5%, 10%
Minimum Chip Size	0.040" × 0.040" standard, smaller negotiable
Minimum Overlap	0.003"
Vias (Plated-Through or Solid-Filled)	
Diameter (min., max.)	0.005", 0.20"
	Depending on substrate material and thicknes

Thick Film Design Rules

- A. Placement of any conductor, resistor, or dielectric: minimum of 0.005" from substrate border.
- B. Standard tolerance: $\pm 0.002''$ or 10%, whichever is greater.
- C. Areas where a wire-bond crosses over a conductor should be glassed.
- D. For multilayer or crossover conductors, dielectric should overlap first conductor by 0.010".
- E. Vias for multilayer dielectric should be 0.015"×0.015" standard, but 0.010"×0.010" may be used.
- F. Via fill pads should be same size as dielectric vias.
- G. Conductors should not be under any printed resistor.
- H. Conductor overlap standard is 0.010".
- I. Minimum resistor sizes should be 0.030"×0.030". Smaller geometry size may be used upon departmental approvals.
- J. Resistor length should be no more than 3.5 times resistor width.
- K. Resistor overlap: 0.005" min., 0.010" typical.
- L. Three resistor passes are recommended. More than five require engineering approval.
- M. Resistors are designed 20% below nominal value.
- N. Resistors are to be on the top most layer of the substrate.
- O. Via pad size is a minimum of 0.010" annular to nominal hole.
- P. Minimum distance of hole edge to finished substrate edge is 0.025" or thickness of substrate, whichever is greater.
- Q. Minimum spacing between holes is 0.025" or thickness of substrate, whichever is greater.
- R. Non-plated via holes should not have metallization closer than 0.005" to the hole.
- S. Minimum wire-bonding pad size is 0.015"×0.015". 0.010" width may be used as long as the bond pad is in the same direction as the wire.
- T. Areas where a chip is to be mounted must have a minimum clearance of 0.005" on each side of the chip. Design should be done as worst case using the largest geometry of a given chip.
- U. Wire-bonding should not be done directly on via.
- V. Components should not cover other components (e.g., caps over resistors, ICs over resistors, etc.).
- W. Minimum conductor line width 0.005".
- X. Minimum conductor line spacing 0.005".
- Y. Screened stacks of dielectric glass over 35 microns high should be stepped down with a 0.010" step on all four sides of the stack at or before each 35-micron height.